A q-Analogue of the Zassenhaus Formula for Disentan- gling Exponential Operators
نویسنده
چکیده
The general structure of a q-analogue of the Zassenhaus formula, the dual of the Baker-Campbell-Hausdorff formula for combining exponential operators, is derived and the first few terms of the disentanglement of a q-exponential operator are explicitly given.
منابع مشابه
Disentangling q-Exponentials: A General Approach
We revisit the q-deformed counterpart of the Zassenhaus formula, expressing the Jackson q-exponential of the sum of two non-q-commuting operators as an (in general) infinite product of q-exponential operators involving repeated q-commutators of increasing order, Eq(A + B) = Eqα0 (A)Eqα1 (B) ∏ ∞ i=2 Eqαi (Ci). By systematically transforming the q-exponentials into exponentials of series and usin...
متن کاملEigenfunction expansion in the singular case for q-Sturm-Liouville operators
In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.
متن کاملZassenhaus Lie Idempotents, q-Bracketing and a New Exponential/Logarithm Correspondence
We introduce a new q-exponential/logarithm correspondance that allows us to solve a conjecture relating Zassenhauss Lie idempotents with other Lie idempotents related to the q-bracketing operator.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملh–analogue of Newton’s binomial formula
In this letter, the h–analogue of Newton’s binomial formula is obtained in the h–deformed quantum plane which does not have any q–analogue. For h = 0, this is just the usual one as it should be. Furthermore, the binomial coefficients reduce to n! (n−k)! for h = 1. Some properties of the h–binomial coefficients are also given. Finally, I hope that such results will contribute to an introduction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002